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Abstract
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1 Introduction

One of the most fundamental problems in mechanism design is whether an

allocation rule is implementable. This question appears in various scenarios, in-

cluding public goods provision, bilateral trade, matching, etc. In the public goods

provision problem, a governor needs to decide whether to provide a public good.

Its value for each person is unknown to the governor. Given any specific allocation

rule, is there a mechanism where everyone truthfully reports his value?

Rochet (1987) characterizes when an allocation rule is implementable in dominant-

strategy mechanisms. The implementability condition reduces to the valuation dif-

ference satisfying cyclic monotonicity for all players and all report profiles (of the

other players). This condition is demanding as the dominant-strategy mechanism

is a strong concept. Consequently, many allocation rules are not implementable,

which significantly limits the scope of applications. What if we relax the domi-

nant strategy to Bayesian mechanisms? What is the implementability condition

for Bayesian mechanisms?

We provide a sufficient and necessary condition for an allocation rule to be

implementable in Bayesian mechanisms. For each player, we say that two types

are consistent if their posteriors about the other players’ type are identical. This

consistency is an equivalence relation, and we can partition the type space into

consistent classes. We show that an allocation rule is implementable in Bayesian

mechanisms if and only if the expected valuation difference satisfies cyclic mono-

tonicity within each consistent class for all players (Theorem 1).

We call a belief profile non-degenerate correlated if each player’s posterior belief

(about the other players’ type) varies with his own type (an injection). This

condition is weak as it is generically true in the space of all belief profiles/type

distributions. As a corollary of our characterization, our second result shows

that generically, any allocation rule is implementable in Bayesian mechanisms

(Theorem 2).

Our results are quite general in several aspects. First, we do not assume in-

dependence on the prior distribution. That is, we allow for arbitrary correlation
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in the players’ joint type distribution. Second, we do not need to assume a com-

mon prior. We only need a first-order belief, and belief hierarchy is irrelevant.

The common prior assumption is widely adopted in the literature. For example,

Crémer and McLean (1988)’s full rent extraction relies heavily on the common

prior assumption. Third, we do not impose any restrictions on the allocation rule.

Fourth, we allow for interdependent preference. The only substantive assumption

we need is that the preference is quasi-linear in transfer.

Our technical contribution is a novel proof strategy to derive the implementabil-

ity condition. Our proof is based on the fundamental duality theorem and net-

work flow theory. Vohra (2011) provides an extensive summary of how mecha-

nism design intimately relates to linear programming. Our proof might be helpful

for future research as we directly analyze the polyhedron of incentive-compatible

Bayesian mechanisms.

Bergemann et al. (2012) notice a result similar to our Theorem 1 in the setting

of efficient auction. Müller et al. (2007) characterize the implementability con-

dition of Bayesian mechanisms assuming independent common prior. Gershkov

et al. (2013) show that the set of implementable interim utilities under some con-

ditions is the same under dominant-strategy and Bayesian mechanisms, although

the set of implementable allocation rules differs.

The rest of this paper is organized as follows. In Section 2, we set up the model.

Section 3 characterizes the implementability condition for Bayesian mechanisms.

Section 4 discusses the implications of our main result. In Section 5, we apply our

results to several examples in the literature.

2 Setting

There are n ≥ 1 agents (he) and a principal (she). Each agent i has a type θi

drawn from a common type space Θ = {θ1, · · · , θm}.1 The state of the game is the

type profile θ = (θ1, · · · , θn) ∈ Θn. Let P denote the common prior. Let P−i(·|θi)

denote agent i’s belief conditional on his type θi. Let (P−1, · · · ,P−n) denote a

1The type space does not need to be identical across agents.
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belief profile. (Our result does not need the common prior assumption. We only

need a belief profile.) A mechanism consists of an allocation rule and a transfer

rule. The implemenation problem is: when is an allocation rule implementable?

By the revelation principle, we focus on direct mechanisms.

Let θ′i denote the report type of agent i, which is not necessarily θi, and θ′ =

(θ′1, · · · , θ′n) denote the report profile. An allocation rule g is a function that

assigns an outcome to each report profile, i.e., g : Θn → X where X denotes

a set of outcomes. We allow for interdependent values across agents. That is,

agents’ values do not only depend on their own types but on the types of all

agents. The value that agent i assigns to an allocation x is denoted vi(x|θ). Let

v = (v1(·), · · · , vn(·)) denote the value profile.

A transfer is a function t : Θn → Rn. Given a report profile θ′, agent i receives

ti(θ
′), where ti(·) is the transfer function to agent i. Let t = (t1(·), · · · , tn(·))

denote the transfer profile. When the actual type is θi and the report profile is θ′,

the payoff of agent i is ui(θ
′,θ) = vi(g(θ

′)|θ) + ti(θ
′).

Note that our setting can nest various models in mechanism design. We present

several examples.

Model 1 (Public goods). Clarke (1971) and Groves (1973) study the public good

provision problem. The governor decides whether to provide a public good to

benefit n agents. Agent i’s valuation of the public good is θi, which is unknown

to the governor. The governor makes her decision based on the report profile

θ′. The allocation rule g maps a report profile to an outcome x ∈ X = {0, 1},

where 1 indicates approval and 0 indicates disapproval. The benevolent principal

wants to provide the public good if the sum of the value of all agents exceeds

the production cost C, namely x = 1 if and only if
∑n

i=1 θi > C. The principal

designs the payment ϕi for each agent i to induce truthful reporting. If g(θ′) = 0,

all agents pay zero. Otherwise, agents share the production cost. Agents i’s payoff

is 1x=1θi − ϕi(θ
′).2

Model 2 (Bilateral Trade). Myerson and Satterthwaite (1983) introduce the bi-

2Rob (1989) and Pesendorfer (1998) study the pollution claim settlements, which is similar
to the public good provision problem.
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lateral trade model. A seller (agent 1) owns a single indivisible good. There is one

potential buyer (agent 2). Agent i’s private valuation of the good is θi. The mech-

anism designer tries to induce efficient trade. The trade should occur if and only

if θ1 < θ2. The report type is (θ′1, θ
′
2). The allocation rule g maps a report profile

to an outcome x ∈ X = {0, 1}, where 1 indicates trade and 0 indicates no trade.

If the trade takes place, the payment ϕ(θ′1, θ
′
2) is the price of the good. If the trade

does not occur, ϕ(θ′1, θ
′
2) = 0. The seller’s payoff is θ1(1− g(θ′1, θ

′
2))+ϕ(θ′1, θ

′
2) and

the buyer’s payoff is θ2g(θ
′
1, θ

′
2)− ϕ(θ′1, θ

′
2).

Model 3 (Assigning Multiple Objects). Moulin (2009) introduces the following

objects assignment problem. There are p identical objects and n agents with 1 ≤

p < n. Each agent demand at most one object. Agent i’s valuation of an object is

θi. The principal asks for agents’ valuations. The allocation rule g decides which

p agents would receive the object given a report profile θ′. The principal designs

the payment ϕi(θ
′) for each agent i. Agent i’s payoff is θi1i receives the good− ϕi(θ

′).

We now define incentive-compatible mechanisms.

Definition 1 (DICM). A mechanism (g, t) is a dominant-strategy incentive-

compatible mechanism if truthful reporting by all agents forms a dominant-strategy

equilibrium, i.e.,

vi(g(θi,θ
′
−i)|θ)+ti(θi,θ

′
−i) ≥ vi(g(θ

′
i,θ

′
−i)|θ)+ti(θ

′),∀θ−i ∈ Θn−1,θ′ ∈ Θn, i = 1, · · · , n.

If we assume that each agent’s value of outcome only depends on his own type, we

recover the standard definition.

vi(g(θi,θ
′
−i)|θi) + ti(θi,θ

′
−i) ≥ vi(g(θ

′
i,θ

′
−i)|θi) + ti(θ

′
i,θ

′
−i), ∀θ′ ∈ Θn, i = 1, · · · , n.

(DIC)

Definition 2 (BICM). A mechanism (g, t) is a Bayesian incentive-compatible
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mechanism if truthful reporting by all agents forms a Bayesian equilibrium, i.e.,

Eθ−i
[vi(g(θi,θ−i)|θ) + ti(θi,θ−i)|θi] ≥ Eθ−i

[vi(g(θ
′
i,θ−i)|θ) + ti(θ

′
i,θ−i)|θi] ,∀i = 1, · · · , n.

(BIC)

We study when an allocation rule is implementable in the Bayesian incentive-

compatible mechanism, also known as the implementability or implementation

problem (Rochet, 1987; Müller et al., 2007). We do not need to impose any in-

dividual rationality (IR) constraint. For any reservation utility, we can always

translate the transfer up to meet the IR constraint, without affecting the IC con-

straint. In the same logic, without loss of generality, we assume that t ≥ 0.

Definition 3 (Implementability of Mechanisms). We say that an allocation g is

implementable in dominant-strategy/Bayesian mechanisms if there exists a t ≥ 0

such that (g, t) satisfy the (DIC)/(BIC) condition.

The most classic example is the efficient implementation problem. We say an

allocation rule is efficient if it maximizes the sum of agents’ payoff. A principal

with the efficient allocation as her objective is called benevolent.

3 Implementatability Conditions

For the following analysis, it is useful to define the value difference between θi

and θ′i as

Dvi(θ
′
i, θi|θ−i,θ

′
−i) ≜ vi(g(θi,θ

′
−i)|θ)− vi(g(θ

′
i,θ

′
−i)|θ).

Moreover, we define the expected value difference between θi and θ′i

EDvi(θ
′
i, θi) ≜ Eθ−i

[vi(g(θi,θ−i)|θ)− vi(g(θ
′
i,θ−i)|θ)|θi] .

We review the results on the implementability of the dominant-strategy mech-

anisms. Rochet (1987) obtains this result abstracting away interdependent values.
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For the lemma below, we assume that each agent’s value of outcome only depends

on his own type.

Lemma 1. (Rochet, 1987). An allocation rule g is implementable in dominant-

strategy mechanisms if and only if value difference Dv satisfies cyclic monotonic-

ity, i.e., for all i, for any finite types θ(1), · · · , θ(k) ∈ Θ, for all θ′
−i,

Dvi(θ
(1), θ(2)|θ′

−i) +Dvi(θ
(2), θ(3)|θ′

−i) + · · ·+Dvi(θ
(k), θ(1)|θ′

−i) ≥ 0. (1)

For sufficency, we illustrate Rochet (1987)’s construction of the transfer func-

tion. Construct a directed graph: (i) each type is represented by a node; (ii) the

length of the arc from node θ to node θ′ is Dv(θ, θ′). For each type θ, we can

find the shortest length path among those directed paths starting at θ, denoted

by w(θ), i.e.,

w(θ) ≜ min
θ(n),all sequences from θ(0)=θ to θ(n)

n−1∑
k=0

Dv(θ(k), θ(k+1)). (2)

According to the cyclic monotonicity, all directed cycles in the constructed directed

graph have positive length. Thus, w is well-defined.

Then transfer t(θ) = w(θ) − minθ w(θ) is incentive compatible. Note that

w(θ)+Dv(θ′, θ) represents the length of a path starting from θ′, which is necessarily

no less than w(θ′)—the shortest length path starting from θ′. Hence, w(θ) +

Dv(θ′, θ) ≥ w(θ′), implying t(θ) ≥ t(θ′)−Dv(θ′, θ).

We next characterize the implementability condition for Bayesian mechanisms.

First, we introduce some notations. For an agent i, we say two types θj, θk are

consistent if two conditional probability distributions associated with θj, θk are

identical, i.e., P−i(·|θj) ≡ P−i(·|θk).3 Then, for each i, we can partition the type

space Θ into several consistent classes. Let Θ
(j)
i denote the j-th consistent class

for agent i, i.e., Θ =
⋃Ji

j=1Θ
(j)
i and ∀j ̸= k,Θ

(j)
i ∩Θ

(k)
i = ∅, where Ji is the number

of consistent classes for agent i. We provide an example to illustrate the definition

3Namely, P−i(θ−i = θ̂−i|θi = θj) = P−i(θ−i = θ̂−i|θi = θk) for all θ̂−i ∈ Θn−1.
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of consistent types.

Example 1. Consider a two-player problem with Θ = {θH , θM , θL}. The prior

distribution is summarized in the following table. For agent 1, θM , θL are consistent

types, since their conditional probability distributions are identical. Hence, the

consistent classes for agent 1 are Θ
(1)
1 = {θH} and Θ

(2)
1 = {θM , θL}. Meanwhile,

there is no consistent type for agent 2. Thus, the consistent classes for agent 2 are

Θ
(1)
2 = {θH}, Θ

(2)
2 = {θM}, and Θ

(3)
2 = {θL}.

P(·) θ2 = θH θ2 = θM θ2 = θL

θ1 = θH 1
6

0 1
9

θ1 = θM 1
6

1
6

1
6

θ1 = θL 1
18

1
18

1
18

Table 1: Prior Distribution

We are ready to provide a sufficient and necessary condition for an allocation

rule to be implementable in Bayesian mechanisms. It turns out we only need the

expected value difference to satisfy the cyclic monotonicity within each consistent

class.

Theorem 1. Charaterization. An allocation rule is implementable in Bayesian

mechanism if and only if for all i, all consistent classes Θ
(j)
i , and all finite types

θ(1), · · · , θ(k) ∈ Θ
(j)
i ,

EDvi(θ
(1), θ(2)) + EDvi(θ

(2), θ(3)) + · · ·+ EDvi(θ
(k), θ(1)) ≥ 0. (3)

We can compare this implementability condition versus the one under dominant-

strategy mechanisms. As agents only care about the expected payoff in a Bayesian

mechanism, it is intuitive that the expected value difference supersedes the value

difference (conditional on the others’ report). Yet, it is surprising that we only

need the cyclic monotonicity to hold within each consistent class. We provide

a proof sketch below to offer some intuition. The formal proof is relegated to

Appendix A.
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Proof Sketch of Theorem 1. For necessity, for each agent, for k types, we can write

k incentive-compatible inequalities. For all i and θ−i, we have

Eθ−i
[t(θ(κ),θ−i)|θκ] ≥ Eθ−i

[t(θ(κ−1),θ−i)|θκ]−EDv(θ(κ−1)|θ(κ)),∀κ ∈ {1, 2, · · · , k},

with θ(0) ≜ θ(k). Telescoping sum yields the condition.

For sufficiency, we use primal-dual technique based on the fundamental duality

theorem. We translate the existence problem into a system of inequalities. By

Farkas’ lemma, the following two statements are equivalent: (i) There exists a

vector Ti such that Ti ≥ 0, AiTi ≥ bi. (ii) For any vector yi such that yi ≥

0,y⊤
i Ai ≤ 0, we have b⊤i yi ≤ 0. From the linear programming perspective, yi is

the Lagrange multiplier of AiTi ≥ bi.

Back to our problem, we first rewrite the BIC condition, a polyhedron, as the

form of statement (i) above. Let Pi(θ
r) denote the posterior of agent i conditional

on his type being θr. It is a mn−1-dimensional row vector of P−i(θ−i|θr) with mn−1

different θ−i arranged in lexicographic order. Each row of matrix Ai consists of

the coefficient of BIC condition like (0,Pi(θ
r),0,−Pi(θ

r),0). And let Ti denote

the corresponding vector of transfer and bi denote the vector that consists of the

corresponding minus expected value difference, i.e. −EDvi(θ
s, θr). Then the BIC

condition can be written as {Ti|AiTi ≥ bi,Ti ≥ 0}. Now it suffices to show that

the polyhedron {Ti|AiTi ≥ bi,Ti ≥ 0} is non-empty.

By our previous discussion, the polyhedron being non-empty is equivalent to

the existence of the vectors yi. Each vector yi has m(m−1) entries, corresponding

to pairs of different types. The entries are indexed by r◦s in a lexicographic order:

1◦2, 1◦3, · · · , 1◦m, · · · ,m◦1,m◦2, · · · ,m◦(m−1). By the fundamental duality

theorem, the r ◦ s entry of yi, y
r◦s
i ≥ 0 is the Lagrange multiplier of

∑
θ−i

P−i(θ−i|θr)ti(θr,θ−i) ≥
∑
θ−i

P−i(θ−i|θr)ti(θs,θ−i)− EDvi(θ
s, θr)

With some algebraic manipulation, we can get y⊤
i Ai = 0. Expand it, we have for
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any r, ∑
s,s ̸=r

yr◦si Pi(θ
r)−

∑
s,s ̸=r

ys◦ri Pi(θ
s) = 0.

Since all posterior Pi has L1-norm 1, we get
∑

s,s ̸=r y
r◦s
i −

∑
s,s ̸=r y

s◦r
i = 0. Then

the above equation has a strong geometric interpretation that any posterior Pi(θ
r)

is in the convex hull of other posterior vectors. In Figure 1, consider the vector

that has the largest L2-norm, i.e. the red vector. It cannot be in the convex

hull of other different vectors. So for any two inconsistent types θr, θs, we have

yr◦s = ys◦r = 0.

O x

y

1

1

Figure 1: Geometric intuition

Then the Lagrange multiplier of any two inconsistent types θr, θs is always

zero. By complementary slackness, these incentive-compatible inequalities do not

affect the existence of the transfer payment. So we only need to consider the

inequality of those consistent types, which reduces to Lemma 1.

4 Further Discussions

In the literature, there is a common assumption that types are independently

distributed across players. Yet, this assumption is quite strong. In reality, types

are typically correlated. For example, in a procurement process (Anton and Yao,

1992; Jarman and Meisner, 2017), a principal decides to purchase a good from

multiple potential suppliers. (The principal is benevolent and wants to purchase a
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good from the lowest-cost supplier.) Each supplier’s cost is his private information.

The costs are commonly interdependent, as there are industrial-level shocks that

induce a positive correlation, such as changes in the price of raw materials or

exchange rates. When one supplier has a higher cost, his belief about others’

costs is generally higher.

Motivated by such considerations, we introduce a concept that only involves

minimal correlation. We say that a belief profile is non-degenerate correlated

if for any agent i, his belief about the others’ type distribution conditional on

his own type θi varies with θi, i.e., for all θr ̸= θs and i = 1, · · · , n, ∃θ−i ∈

Θn−1,P−i(θ−i|θr) ̸= P−i(θ−i|θs).4 We also say that a common prior is non-

degenerate correlated if such condition holds. Generically, almost all joint type

distribution is non-degenerate correlated.5 Moreover, our condition is weaker than

other related conditions in the literature.

One similar assumption is the Crémer–McLean conditions (Crémer and McLean,

1988). They derive conditions under which full rent extraction is feasible in

dominant-strategy auctions and Bayesian auctions. We can write agent i’s be-

lief about the other agents’ types conditional on agent i’s type θi as a vector with

mn−1 entries. Agent i’s conditional belief is described by the set of vectors of this

form, one for each type of agent i. The first Crémer–McLean condition requires

that these vectors are linearly independent for every agent. The second requires

that for each agent, any vector cannot be a convex combination of the others. By

contrast, a non-degenerate correlated belief profile only requires that these vectors

are pairwise distinct for every agent. Hence, both Crémer-McLean conditions are

more restrictive.6

Another related concept is the stochastic relevance condition in Miller et al.

(2005). We say that type θi is stochastically relevant for type θj if the distribution

4The non-degenerate correlated condition is the same as condition (A4) in Kandori and
Matsushima (1998).

5The set of joint distributions that fail to meet the non-degenerate correlated condition has
Lebesgue measure zero.

6When n ≥ 3, every joint distribution satisfying the Crémer–McLean condition is non-
degenerate correlated, but not vice versa. When n = 2, the non-degenerate correlated condition
is equivalent to the Crémer–McLean condition.
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of θj conditional on θi varies with θi. We say that the stochastic relevance condition

holds if for all i ̸= j, θi is stochastically relevant for θj. Every joint distribution

satisfying the stochastic relevance condition is non-degenerate correlated, but not

vice versa.7

Given a non-degenerate correlated distribution, each consistent class Θ
(m)
i is a

singleton, leading to the following result.

Theorem 2. If the belief profile is non-degenerate correlated, any allocation is

implementable in a Bayesian mechanism.

This result is very powerful. Recall that non-degenerate correlated condition

is weak and holds generically in the set of all joint type distributions. Hence,

generically, any allocation rule is implementable.

Yet, our result is silent on the magnitude of the transfer. In our problem, the

principal’s only objective is to implement an allocation rule. She has an infinite

amount of funds to achieve this objective. We do not impose any restraint on the

transfer like budget balance. Consequently, we get a stronger implementability

result in return.

5 Applications

In this section, we apply our results to several examples in the literature.

5.1 Communication and Collusion

Kandori and Matsushima (1998) analyze whether communication can sustain

cooperation in a market with secret price cutting. In the market, each firm’s

sale level is its private information. Firms cannot directly observe price cutting

from competing firms. Other than private price cutting, demand shocks can also

affect sales levels. Hence, each firm’s own sales can only imperfectly reflect whether

7When n ≥ 3, the stochastic relevance condition is more restrictive than the non-degenerate
correlated condition. When n = 2, the non-degenerate correlated condition is equivalent to the
stochastic relevance condition.
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opponents cut their prices. Kandori and Matsushima (1998) study whether agents

would tell the truth when communicating with other agents to form long-term

cooperation.

To maintain high prices, firms need to punish those deviators. However, since

products are generally differentiated, the firms typically receive different levels of

sales and may end up having diverse beliefs about what might have happened. At

the end of each period, players can communicate with each other about what they

have privately observed. Since communication is cheap, firms can freely provide

any false information if it suits their interest.

Kandori and Matsushima (1998) model the above problem as an infinite re-

peated game with discount factor δ → 1. In each period t, each firm i chooses an

action (i.e., price) ati ∈ Ai. Then a signal (i.e., sales profile) wt randomly realizes

according to the action profile at from the distribution p(w|a). The likelihood

function p(w|a) is uniform across different stages. Each firm i only observes its

own signal (i.e., sales) wt
i ∈ Wi. They assume the non-degenerate correlated con-

dition, i.e. for all agent i, for all a, for all wi ̸= w′
i, the posterior distribution

p̃−i(w−i|a, wi) ̸= p̃−i(w−i|a, w′
i) for some w−i.

At the end of each period, each firm communicates with other firms by sending

a message mt
i ∈ Mi (reporting its sales). In each period, firm i’s strategy sti =

(αt
i, η

t
i) consists of a strategy of action αt

i : At−1
i ×W t−1

i ×M t−1 → ∆(Ai) and

a strategy to send message ηti : At
i ×W t

i ×M t−1 → ∆(Mi). In period t, firm i

obtains a stage payoff ϕi(α
t
i, w

t
i).

Kandori and Matsushima (1998) reduce the infinite repeated game to a T -

period repeated game (as T →∞) with a transfer t paid in the last stage. Namely,

the stage game repeats itself for T times, and afterward, each firm i receives ti(m
T )

where mT = (mT
1 , · · · ,mT

n ). The payoff of firm i is thus

1− δ

1− δT

T∑
t=1

ϕi(a
t
i, w

t
i)δ

t−1 + ti(m
T ).

They restrict attention to stationary action, where each firm adopts the same
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strategy in every period, αt
i = αi for all t. The payoff of firm i is translated into

Ew∼p(·|α)ϕi(αi, wi) + E{ti(m)|α,w},

where α = (α1, · · · , αn) denotes the profile of stationary strategies. The former

term, Ew∼p(·|α)ui(αi, wi), is solely determined by the stationary strategy profile

α. They argue that we can treat an action profile α as exogenously given, and

players have no incentive to deviate if all firms truthfully report their messages.

Moreover, the incentive for truth-telling is strict.8

We consider the auxiliary problem with

vi((g(m))|w) =

Ew∼p(·|α)ϕi(αi, wi)− 1 mi = wi,

Ew∼p(·|α)ϕi(αi, wi) mi ̸= wi.

According to our Theorem 2, there exists a transfer t̂ that implements the Bayesian-

Nash equilibrium in the auxiliary problem. Therefore, this transfer t̂ induces a

strict Bayesian-Nash equilibrium in the original problem.

Corollary 1. There exists a transfer that induces truthful report in a strict Bayesian-

Nash equilibrium.

This is the Theorem 2 of Kandori and Matsushima (1998).

5.2 Information Elicitation

Miller et al. (2005) consider an information elicitation problem, also known as

the crowdsourcing problem. Many decision processes depend on eliciting truthful

evaluations from n agents, such as online recommender systems and academic

reviewing. The mechanism designer hopes to design a reward system to induce

honest reports.

Consider the online recommender systems. The quality of the product, ω, is

a random state chosen from the set Ω. Each agent i privately observes a signal

8See their Section 4 for a detailed discussion.
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θi about the product quality, where θi is drawn from the set Θ. The conditional

distribution of θi given ω is denoted by fi(θ|ω) = Pr(θi = θ|ω). Miller et al. (2005)

assume that θ1, · · · , θn are conditionally independently and identically distributed:

fi(θ|ω) ≡ f(θ|ω). They assume the stochastic relevance condition we mentioned

earlier. It is stronger than our non-degenerate correlated condition. Here, we only

need to assume the non-degenerate correlated condition.

The principal asks the agents to report their private signals. She designs a

reward system that assigns to agent i a reward ti(θ
′) based on the report profile

θ′. The payoff of each agent is ui(θ
′, θi) = ti(θ

′). Given this payoff structure,

even if there is no transfer at all t ≡ 0, truthful reporting by all agents forms a

Bayesian-Nash equilibrium. Their research question is: is it possible to design a

transfer t such that truthful reporting forms a strict Bayesian-Nash equilibrium?

Truthtelling is the unique best response for one agent in a strict Bayesian-Nash

equilibrium, provided that other agents tell the truth

Eθ−i
[ti(θi,θ−i)|θi] > Eθ−i

[ti(θ
′
i,θ−i)|θi] ,∀i = 1, · · · , n.

To apply our results, consider an auxiliary problem with an allocation rule

such that vi(g(θ
′)|θ) = ϕi(θ

′
i|θi). Namely, the agent i’s value gained from the

allocation rule g only depends on agent i’s type θi and his report θ′i. The payoff

of each agent is

ui(θ
′, θi) = ϕ(θ′i|θi) + ti(θ

′).

(In the original problem, ϕi(θ
′
i|θi) ≡ 0 for all i, θi and θ′i.) Let

ϕ̂i(θ
′
i|θi) =

−1 θ′i = θi,

0 otherwise.

According to Theorem 2, there exists a transfer t̂ that implements the Bayesian-

Nash equilibrium in the auxiliary problem. Therefore, this transfer t̂ induces a

strict Bayesian-Nash equilibrium in the original problem, which coincides with

Proposition 1 in Miller et al. (2005).
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Then we consider scenarios with a reporting cost. Miller et al. (2005) assume

a fixed and identity-independent cost c > 0 of report, namely ϕi(θ
′
i|θi) ≡ −c for

all i, θi and θ′i. We can consider an auxiliary problem such that

ϕ̃i(θ
′
i|θi) =

−c− 1 θ′i = θi,

−c otherwise.

According to Theorem 2, there exists a transfer t̃ that implements the Bayesian-

Nash equilibrium in the auxiliary problem with reporting cost. Therefore, this

transfer t̃ induces a strict Bayesian-Nash equilibrium in the original problem with

cost, which coincides with Proposition 2 in Miller et al. (2005).

However, assuming a fixed and identity-independent cost is restrictive in real-

ity. More importantly, the reporting cost generates another economic incentive to

misreport beyond the model in Miller et al. (2005). For example, when assessing

a research paper, submitting a report for revise-and-resubmit is more costly than

suggesting a rejection. This may create an incentive to reject the paper. This

moral hazard problem becomes severe as the paper length grows. Similar issues

can be found when collecting data in fieldwork or lab experiment.

Even with general cost structures, we can still address the information elici-

tation problem. Let ϕi(θ
′
i|θi) denotes the cost of reporting θ′i when agent i’s true

type is θi. We can define the auxiliary problem by assuming

ϕ̄i(θ
′
i|θi) =

ϕi(θ
′
i|θi)− 1 θ′i = θi,

ϕi(θ
′
i|θi) otherwise.

By Theorem 2, there always exists a transfer rule t̄ in this auxiliary problem.

Therefore, this transfer t̄ induces a strict Bayesian-Nash equilibrium with general

cost structure. We thereby get a stronger result with a weaker assumption (non-

degenerate correlated condition) than Miller et al. (2005).

Corollary 2. Under non-degenerate correlated distribution, for any reporting cost

ϕ, there exists a transfer t such that truthful reports forms a strict Bayesian-Nash
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equilibrium.

5.3 Implementability with Independent Common Prior

An extremely simple case for the implementability problem is what happens if

we have independent common prior. Müller et al. (2007) directly extend Rochet

(1987)’s original proof and obtains the following result.

Corollary 3. If the common prior distribution is independent, an allocation g

is implementable in Bayesian mechanism if and only if the expected value dif-

ference EDv satisfies cyclic monotonicity, i.e, for all i and for any finite types

θ(1), · · · , θ(k) ∈ Θ,

EDvi(θ
(1), θ(2)) + EDvi(θ

(2), θ(3)) + · · ·+ EDvi(θ
(k), θ(1)) ≥ 0. (4)

Yet, this is also a corollary/degenerate case of our Theorem 1. When the prior

distribution is independent, the entire type space Θ is a consistent class for each

agent, leading to this result.

6 Concluding Remarks

Our paper assumes the type space to be finite. One direction for future research

is to generalize our results to infinite type space. Moreover, as we do not impose

(ex-ante) budget balance, IR constraints are irrelevant in our model. Alternatively,

we can achieve budget balance by shifting the transfer function if we do not impose

any IR constraints. One potential extension is to impose both IR constraints and

the budget balance. The IR constraints would naturally depend on the context of

interests, such as players’ outside options.
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A Omitted Proofs

Lemma 2. Network Flow. Given r, s, k ∈ {1, · · · ,m} where m is an integer,

m(m− 1) non-negative real ys◦r, m(m− 1) real numbers Dvs◦r where s ̸= r, if

1.
∑

s,s ̸=k ys◦k =
∑

r,r ̸=k yk◦r, ∀k

2. for all finite sequence s1, · · · , sκ ∈ {1, 2, · · · ,m},

Dvs1◦s2 + · · ·+Dvsκ◦s1 ≥ 0,

then
∑

(s,r),s ̸=r Dvs◦rys◦r ≥ 0.

Proof. Construct a directed graph G(V,E) where V = {1, 2, ...,m} and each di-

rected edge (s, r) has flow ys◦r. Then the first condition of the lemma is that the

sum of each node’s in-degree flow equals the sum of its out-degree flow.

Consider the following updating process. If there exists a cycle (s1, s2, · · · , sk)

such that ys1◦s2 × · · · × ysκ◦s1 ̸= 0, i.e., all flow are non-zero. Then let y =

min{ys1◦s2 , · · · , ysκ◦s1}, and update the values of ys1◦s2 , ys2◦s3 , · · · , ysκ◦s1 as the

following:

ys1◦s2 ← ys1◦s2 − y

· · ·

ysκ◦s1 ← ysκ◦s1 − y

After the updating process,
∑

s,s ̸=k ys◦k =
∑

r,r ̸=k yk◦r,∀k remains, because a

cycle cross node k must have the same in-degree and out-degree then both right

hand side and left hand side minus a constant.

After the updating process, the flow of each edge remains non-negative. The

left hand side of the target inequality,
∑

(s,r),s ̸=r Dvs◦rys◦r, is subtracted by y(Dvs1◦s2+

· · · + Dvsκ◦s1). This implies that the left hand side of the target inequality,∑
(s,r),s ̸=r Dvs◦rys◦r, weakly decreases after the update.

Repeat the above updating process until there exists not cycle (s1, s2, · · · , sk)

such that ys1◦s2 × · · · × ysκ◦s1 ̸= 0. Then, each directed cycle of the remaining

18



graph must have a edge with zero flow. Now we delete the edge with zero flow,

the remaining graph has no directed cycle.

If the remaining graph has no edge, then all ys◦r = 0. The target also becomes

0. Thus,
∑

(s,r),s ̸=r Dvs◦rys◦r weakly decreases to 0 and hence
∑

(s,r),s ̸=r Dvs◦rys◦r ≥

0 in the original problem. Otherwise, there must exist a node in remaining graph

which has no in-degree and has at least one out-degree. But this node has different

sum of in-degree and out-degree, which brings a contradiction.

Proof of Theorem 1. Necessity. Suppose a mechanism (g, t) is BIC. Rewrite the

(BIC) condition with conditional probabilities, we have

∑
θ−i

P−i(θ−i|θi)ti(θi,θ−i) ≥
∑
θ−i

P−i(θ−i|θi)ti(θ′i,θ−i)− EDvi(θ
′
i, θi) (BIC’)

For any finite sequence θ(0), θ(1), · · · , θ(k) ∈ Θ
(j)
i with θ(0) = θ(k), we have ∀κ ∈

{1, 2, · · · , k},

∑
θ−i

P−i(θ−i|θ(κ))ti(θ(κ),θ−i) ≥
∑
θ−i

P−i(θ−i|θ(κ))ti(θ(κ−1),θ−i)− EDvi(θ
(κ−1), θ(κ))

Since the types are chosen in the same consistent class, the conditional distribu-

tions are the same. Summing over the inequalities above, we obtain

EDvi(θ
(1), θ(2)) + EDvi(θ

(2), θ(3)) + · · ·+ EDvi(θ
(k), θ(1)) ≥ 0.

Sufficiency. This proof proceeds in four steps. Let Pi(θ
r) denote the posterior

of agent i conditional on his type being θr. It is a mn−1-dimensional row vector of

P−i(θ−i|θr) with mn−1 different θ−i arranged in lexicographic order.

Pi(θ
r) = (P−i(θ

1, · · · , θ1|θr), · · · ,P−i(θ
m, · · · , θm|θr)).

Similarly, let Ti denote the m
n dimension column vector that consists of ti(θ) with

θ in lexicographic order.
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Step 1: Convert the BIC condition to a linear programming feasibility prob-

lem.

In a Bayesian equilibrium, for each θr, θs ∈ Θ, for each agent i, we have

Pi(θ
r)T r

i ≥ Pi(θ
r)T s

i − EDvi(θ
s, θr).

Rearrange the terms,

Pi(θ
r)T r

i − Pi(θ
r)T s

i ≥ −EDvi(θ
s, θr)

where the left hand side can be further expressed as the inner product of two

vectors. One is the column vector Ti, and the other is a row vector composed of

Pi(θ
r),−Pi(θ

r) and 0 in some order. Let P r◦s
i denote this mn dimensional row

vector.

Now, we construct matrix Ai in the linear programming problem. Each row in

Ai is P
r◦s
i . We sort them according to row index r◦s with r ̸= s in a lexicographic

order: 1 ◦ 2, 1 ◦ 3, · · · , 1 ◦m, · · · ,m ◦ 1,m ◦ 2, · · · ,m ◦ (m− 1). The matrix Ai is

Pi(θ
1) −Pi(θ

1) 0 0 · · ·

Pi(θ
1) 0 −Pi(θ

1) 0 · · ·
...

...
...

...
...

Pi(θ
1) 0 0 · · · −Pi(θ

1)

−Pi(θ
2) Pi(θ

2) 0 0 · · ·

0 Pi(θ
2) −Pi(θ

2) 0 · · ·
...

...
...

...
...


Then, we construct a m(m − 1) dimension column vector bi. Let br◦si =

−EDvi(θ
s, θr) where s ̸= r. bi consists of all values of br◦si with r ◦ s in lexi-

cographic order: 1 ◦ 2, 1 ◦ 3, · · · , 1 ◦ m, · · · ,m ◦ 1,m ◦ 2, · · · ,m ◦ (m − 1). For

example, when m = 3, the column vector bi is

(−EDvi(θ
2, θ1),−EDvi(θ

3, θ1),−EDvi(θ
1, θ2),−EDvi(θ

3, θ2),−EDvi(θ
1, θ3),−EDvi(θ

2, θ3))⊤
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Then the (BIC) conditions of transfer function could be written as the con-

straints in the following linear programming,

min0⊤Ti, AiTi ≥ bi,Ti ≥ 0

We only need to prove that the above linear programming problem is feasible.

Step 2: Construct the dual linear programming problem.

Now, we construct the dual linear programming of the above linear program-

ming problem. Let yr◦si where r ̸= s denote m(m − 1) decision variables and yi

collect all m(m− 1) values in a lexicographic order: 1 ◦ 2, 1 ◦ 3, · · · , 1 ◦m, · · · ,m ◦

1,m ◦ 2, · · · ,m ◦ (m− 1).

max b⊤i yi,y
⊤
i Ai ≤ 0,yi ≥ 0

By the strong duality theorem in linear programming, the original problem is

feasible if and only if the optimum in the duality problem is zero. Clearly, zero is

achievable by yi = 0. In the following, we prove b⊤i yi ≤ 0.

By y⊤
i Ai ≤ 0, we have

∑
s,s ̸=r

yr◦si Pi(θ
r)−

∑
s,s ̸=r

ys◦ri Pi(θ
s) ≤ 0, ∀r ∈ {1, 2, · · · ,m}.

Sum over r, we have an equality

∑
r

(∑
s,s ̸=r

yr◦si Pi(θ
r)−

∑
s,s ̸=r

ys◦ri Pi(θ
s)

)
= 0

Then all the inequalities of y⊤
i Ai must be binding. That is

∑
s,s ̸=r

yr◦si Pi(θ
r)−

∑
s,s ̸=r

ys◦ri Pi(θ
s) = 0, ∀r ∈ {1, 2, · · · ,m}.
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Since the L1 norm of each Pi(θ
r) is 1, take the L1 norm to get

∑
s,s ̸=r

yr◦si −
∑
s,s ̸=r

ys◦ri = 0, ∀r ∈ {1, 2, · · · ,m}.

Step 3: We show that if θr, θs are not in the same consistent class, then

yr◦si = ys◦ri = 0.

Order the consistent classes of agent i such that the L2 norm of Pi(θ) where

θ ∈ Θ
(m)
i is decreasing in m. Now consider the first consistent class of agent i, i.e.,

Θ
(1)
i . Take any type in this set θr ∈ Θ

(1)
i , we have

∑
s,s ̸=r

yr◦si Pi(θ
r)−

∑
s,s ̸=r

ys◦ri Pi(θ
s) = 0,

then

∑
s,s ̸=r

yr◦si ∥Pi(θ
r)∥2 =

∥∥∥∥∥∑
s,s ̸=r

ys◦ri Pi(θ
s)

∥∥∥∥∥
2

≤
∑
s,s ̸=r

∥ys◦ri Pi(θ
s)∥2

≤
∑
s,s ̸=r

ys◦ri ∥Pi(θ
r)∥2 = ∥Pi(θ

r)∥2
∑
s,s ̸=r

yr◦si

Then all the inequalities above must be binding. Consider the triangle inequal-

ity. For all s such that s ̸= r, either we have ys◦ri = 0 or Pi(θ
s) is collinear with

Pi(θ
r). Since they all have unit L1 norm, collinearity implies Pi(θ

s) = Pi(θ
r), i.e.,

θs ∈ Θ
(1)
i . Then for all θs ̸∈ Θ

(1)
i we have ys◦ri = 0. So by step 2,

∑
s,s ̸=r

yr◦si =
∑

s,s ̸=r,θs∈Θ(1)
i

ys◦ri .

Sum over all types in Θ
(1)
i ,

∑
θr∈Θ(1)

i

∑
s,s ̸=r

yr◦si =
∑

θr∈Θ(1)
i

∑
s,s ̸=r,θs∈Θ(1)

i

ys◦ri .
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That is ∑
θr∈Θ(1)

i ,θs ̸∈Θ(1)
i

yr◦si = 0

Since all yi ≥ 0, then yr◦si = 0 for θs ̸∈ Θ
(1)
i and θr ∈ Θ

(1)
i . So far we have proven

that for θs ̸∈ Θ
(1)
i and θr ∈ Θ

(1)
i , yr◦si = ys◦ri = 0.

Similarly, we obtain that for all θs, θr in distinct consistent classes, ys◦ri =

yr◦si = 0. And for any θr ∈ Θ
(j)
i we also have

∑
θs∈Θ(j)

i ,s ̸=r

yr◦si =
∑

θs∈Θ(j)
i ,s ̸=r

ys◦ri .

Step 4: Apply the Network Flow Lemma 2 to every consistent class Θ
(j)
i .

In every consistent class Θ
(j)
i , the equation above and cyclic monotonicity of

EDv satisfy the assumption of the Network Flow Lemma 2. Thus,

−b⊤i yi =
∑

(s,r),r ̸=s

(−br◦si )yr◦si =
∑
j

∑
θr,θs∈Θ(j)

i ,θr ̸=θs

(−br◦si )yr◦si ≥ 0.
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